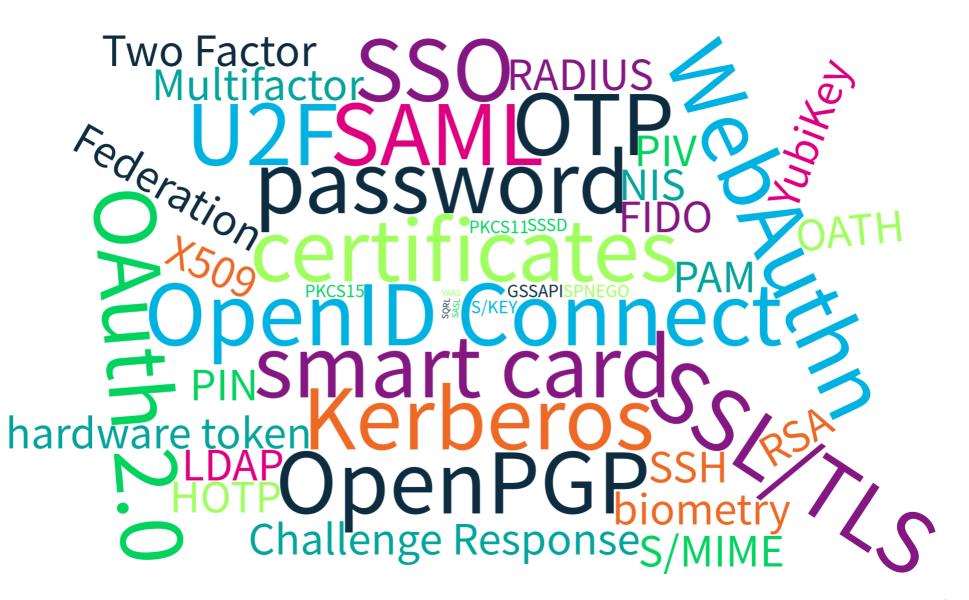


The Authentication Jungle

An overview of all sorts of authentication technologies

New authentication standards ...


HOW STANDARDS PROLIFERATE: (SEE: A/C CHARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, ETC.)

SITUATION: THERE ARE 14 COMPETING STANDARDS. 14?! RIDICULOUS! WE NEED TO DEVELOP ONE UNIVERSAL STANDARD THAT COVERS EVERYONE'S USE CASES. YEAH!

SITUATION: THERE ARE 15 COMPETING STANDARDS.

500N:

Some authentication technologies ...

Authentication theory
"Simple" authentication schemes
Centralized authentication schemes
Federated authentication schemes
Conclusion

Authentication theory

What is authentication?

"[...] the act of confirming the truth of an attribute of a single piece of data [...]"

(Wikipedia)

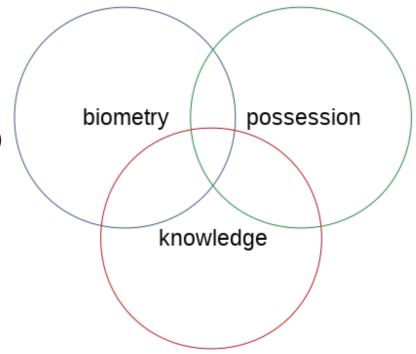
In our context: Mostly concerned about user authentication

 \rightarrow Who am I communicating with?

Attributes for authentication

Something you know

• Secrets (Password, PIN, code, etc.)


Something you have

- Physical keys
- Hardware tokens (Smart card, YubiKey, etc.)

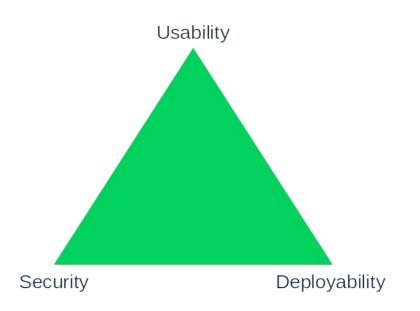
 \rightarrow Should be difficult to clone

• Something you are

- Fingerprint
- Iris
- Face recognition

Challenges for authentication technologies

- Security


- Resiliency to guessing (brute force, online, offline)
- Resiliency to phishing
- Resiliency to theft
- Resiliency to physical observation
- Resiliency to internal observation
- No trusted third parties
- Explicit user-consent
- Unlinkability

- Usability

- Memorywise effortless
- Scalable for users
- Nothing to carry
- Easy recovery from loss

- Deployability

- Cost per user
- Server compatible
- Browser compatible
- Maturity
- Non proprietary

Authentication vs. Authorization

Authentication (AuthN, A1, Au)

 \rightarrow Who am I communicating with?

Authorization (AuthZ, AuthR, A2, Az) \rightarrow What am I allowed to do?

\rightarrow Most of the time: Tightly coupled

"Simple" authentication schemes

Passwords

Password-based logins

- Apparently simple to use
- Apparently easy to implement ("string compare")
- Universal across all domains/contexts
- Recommendations & best practices (NIST, etc.)

Username

Enter your username

Password

Enter your password

Keep me logged in (for up to 365 days)

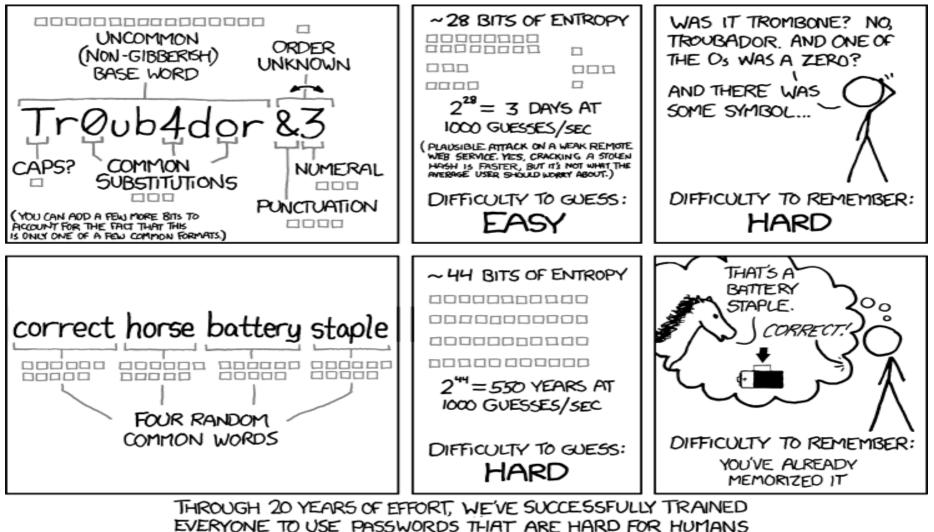
Log in

Help with logging in

Forgot your password?

Problems with passwords

- Weak passwords
- Re-usage across different domains/contexts
- Phishing
- Static
- Breaches
- User's responsibility
 - Chocolate study
 - Easy to remember = Easy to guess


Experts get it wrong

- NIST Special Publication 800-63. Appendix A
 - Originally from 2003
 - Based on no real data (not available)
 - Expiration after x days
 - No re-usage of last x passwords
 - Different character classes: Special character, numbers, big and small caps
 - Example: P@ssW0rd123!

\rightarrow Users still choose easy-to-guess passwords

- Less entropy than expected
- Regular changes bad idea
 - Stolen credentials are used right away (not after x days)
 - weak passwords
 - Workaround: password1 \rightarrow password2 \rightarrow password3 \rightarrow password1

Fun with password strength

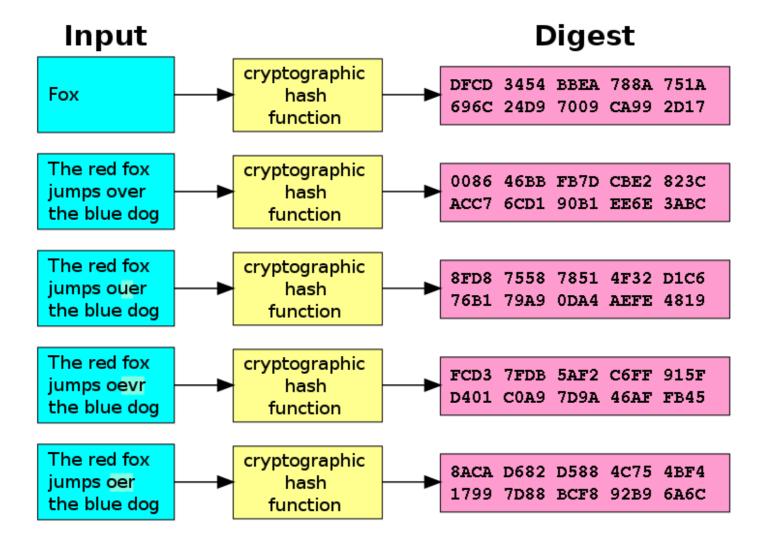
TO REMEMBER, BUT EASY FOR COMPUTERS TO GUESS.

haveibeenpwned.com

- One (of many) password databases based on dumps (> 500 million passwords)
- Search for your account in existing dumps
- Notify when account appears in new dumps
- API / datasets for querying passwords (k-anonymity)
- Should be checked during account creation / password change

Mitigations

- Pro-active password checks during account creation and password changes
- Re-active leak monitoring (i.e. haveibeenpwned.com):
 - Single accounts
 - Whole domain
- Use and encourage password manager
- No annoying limitations for passwords
- Multifactor authentication
- Other authentication schemes
 - Single-Sign-On & Federation



Crypto 101

Crypto 101: Cryptographic hash functions

- Returns a (fixed-size) output ("hash-value") for any input
 - Easy to calculate the hash value value for any given data
 - Computationally difficult to calculate an input with a given hash value
 - Unlikely that two (slightly) different messages have the same hash value
- H(message) \rightarrow output
- Examples
 - SHA1 (e.g. git)
 - SHA2 (256, 384, 512)
 - SHA3
 - MD5
 - MD4
- Use cases
 - Message integrity
 - Digital signatures
 - Authentication

Crypto 101: Cryptographic hash functions

Crypto 101: HMAC

- Hash-based message authentication code
- Defined in RFC2104
- Any cryptographic hash function can be used
- HMAC(secret, message) → output [hash]
- Examples
 - HMAC-MD5
 - HMAC-SHA256
 - HMAC-SHA3
- Use cases
 - data integrity
 - authentication

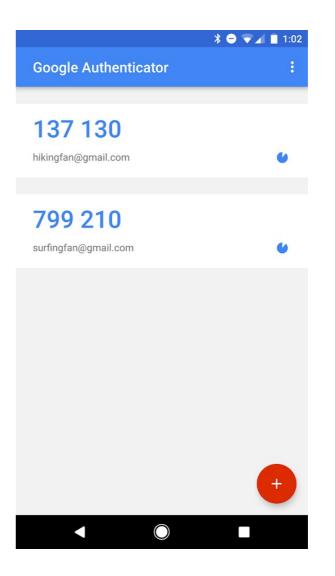
Multifactor authentication

Multifactor authentication to the rescue

- Basic idea: Use multiple factors for authentication (passwords is not sufficient)
 - 2FA = Two-factor authentication
 - MFA = Multi-factor authentication
 - Examples:
 - One-Time passwords (OTP)
 - Chip & TAN
 - password & certificate (OpenVPN, etc.)
- Different channels:
 - SMS
 - Smart card (chipTAN)
 - (Smartphone) apps
 - Different devices (Notifications from Google on Android, etc.)
 - Hardware tokens (RSA SecurID, YubiKey, U2F, etc.)

twofactorauth.org

Email	Docs	SMS	Phone Call	Email	Hardware Token	Software Token
Aol Mail		~	~			
FastMail		~			~	~
Freenet		l	Tell them to supp	oort 2FA on Facebook		
M Gmail		~	~		~	~
GMX GMX				oport 2FA on Twitter		
Hushmail		~		~		~
Legalmail	Tell them to support 2FA on Twitter					
Mail.com	Tell them to support 2FA on Twitter Tell them to support 2FA on Facebook					


OATH: TOTP & HOTP

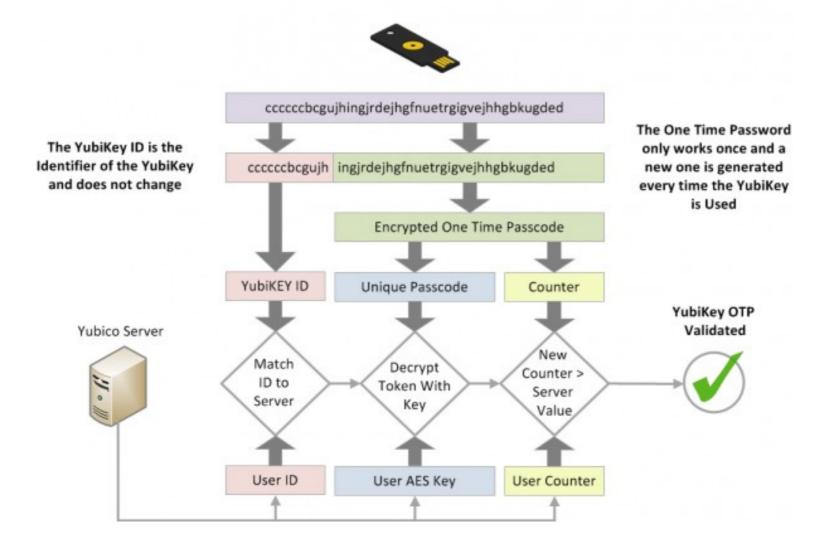
- Standardized by OATH (!= OAuth)
- Many software implementations & hardware tokens
- Requires initial setup to establish shared secret between provider and user
 - e.g. QR code
- TOTP: Time-based OTP
 - Code: HMAC(sharedSecret, timestamp)
- HOTP: Event-based OTP
 - Code: HMAC(sharedSecret, counter)

Soft-token implementations

otpauth://totp/label?secret=secret&issuer=issuer

Hardware OTP tokens

- Shared secret is stored in hardware
 - \rightarrow Cannot be duplicated
- Requires enrollment process
- More on hardware tokens \rightarrow second talk



Yubico OTP

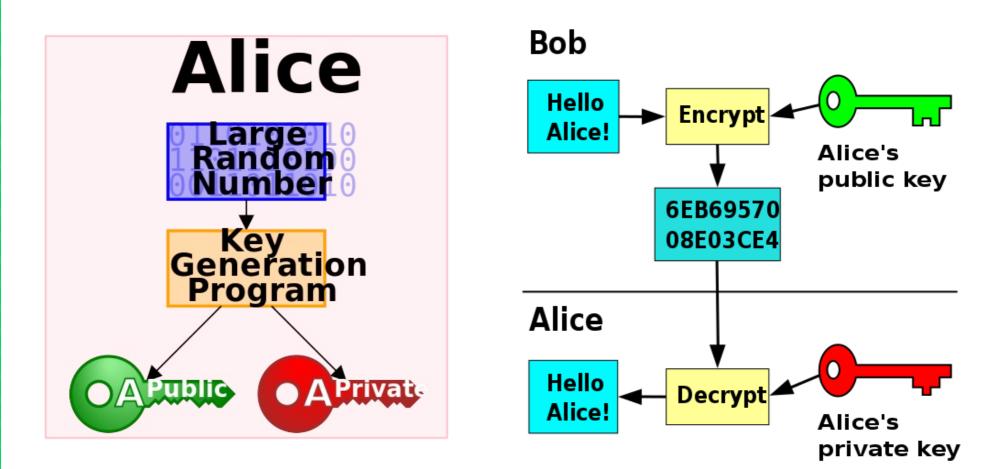
- Hardware token with USB interface
- Emulating USB keyboard
- Multiple slots
 - Short push (~ 0.5 sec)
 - Long push (~ 2 sec)
- Push button \rightarrow User consent
- Supports OATH
 - HOTP
 - TOTP (requires software on host)
 - Yubico OTP
- Many other modes of operation \rightarrow second talk

Yubico OTP explanation

Problems with multifactor authentication

- Based on shared secret
 - \rightarrow Still something to loose (data breach)
- Trusted third party (in case of RSA, Yubico OTP, etc.)
- Broken fallback routines / recovery processes
- Inconvenient (i.e. smartphone not available, etc.)
- No inherent MitM protection (active attacks, phishing, session hijacking)
- Scales badly
 - Requires setup for each service
 - Requires dedicated key / slot for each service
 - Cost per device

Crypto 101


Crypto 101: Symmetric cryptography

- Encryption and decryption are using the same secret (key)
- Examples:
 - AES
 - DES, 3DES
 - Blowfish
 - Twofish
 - RC4
- Block cipher modes:
 - ECB
 - CBC
 - OFB
 - XTS

Crypto 101: Asymmetric Cryptography

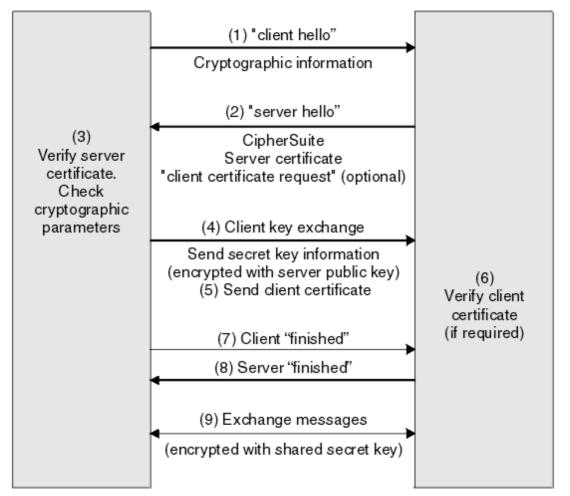
- Two keys (referred to as a key pair)
 - Public
 - Private
- Examples:
 - RSA
 - DH (Diffie Hellman)
 - ECC (Elliptic Curve Cryptography)
- Use cases
 - Encryption
 - Authentication
 - Key agreement
 - Signatures
 - Verification
- Challenge: Key exchange, authenticity of public keys

Crypto 101: Asymmetric Cryptography

SSL/TLS (X509)

SSL/TLS basics

- Prevalent throughout the Internet
- Can basically be used with all protocols (https, ldaps, imaps, etc.)
- Provides confidentiality, integrity, authentication
- Mostly: One-way authentication (Browser)
- Chain of trust: Certificate authority (CA) $\rightarrow \dots$ (intermediate CA) $\dots \rightarrow$ certificate
- PKI: Public-key infrastructure


• Interesting to us: Client certificates

– Can be offloaded to hardware \rightarrow Second talk

SSL/TLS handshake

SSL Client

Server certificates

	Zertifikat-Ansicht: "github.com"	Zertifikat-Ansicht: "github.com"		
<u>A</u> llgemein <u>D</u> etails		Allgemein Details		
Dieses Zertifikat wurde f	für die folgenden Verwendungen verifiziert:	Zertifikats <u>h</u> ierarchie		
SSL-Client-Zertifikat		▼ DigiCert High Assurance EV Root CA		
SSL-Server-Zertifikat		DigiCert SHA2 Extended Validation Server CA github.com		
Ausgestellt für				
Allgemeiner Name (CN)	github.com			
Organisation (O)	GitHub, Inc.	Zertifikats-Layout		
	J) <kein des="" teil="" zertifikats=""></kein>	▼ github.com		
Seriennummer	0A:06:30:42:7F:5B:BC:ED:69:57:39:65:93:B6:45:1F	▼ Zertifikat		
Ausgestellt von		Version		
Allgemeiner Name (CN)	DigiCert SHA2 Extended Validation Server CA	Seriennummer		
Organisation (O)	DigiCert Inc	Zertifikatsunterzeichnungs-Algorithmus Aussteller		
Organisationseinheit (OU	J) www.digicert.com	▼Validität		
Gültigkeitsdauer		Nicht vor		
Beginnt mit	8. Mai 2018	Nicht nach		
Gültig bis	3. Juni 2020	Inhaber		
0	5.5411 2020	Angaben zum öffentlichen Schlüssel des Inhabers		
Fingerabdrücke	21.11.50.00.40.66.01.20.04.52.22.50.25.04.10.00.	Feld-Wert		
SHA-256-Fingerabdruck	31:11:50:0C:4A:66:01:2C:DA:E3:33:EC:3F:CA:1C:9D: DE:45:C9:54:44:0E:7E:E4:13:71:6B:FF:36:63:C0:74	CN = github.com		
	be.45.05.54.44.0e.7e.e4.15.71.0b.11.50.05.00.74	0 = "GitHub, Inc."		
SHA1-Fingerabdruck	CA:06:F5:6B:25:8B:7A:0D:4F:2B:05:47:09:39:47:86:51:15:19:84	L = San Francisco		
		ST = California		
		C = US		
		Objekt-Bezeichner (2 5 4 5) = 5157550		
		Objekt-Bezeichner (1 3 6 1 4 1 311 60 2 1 2) = Delaware		
		Objekt-Bezeichner $(1 \ 3 \ 6 \ 1 \ 4 \ 1 \ 311 \ 60 \ 2 \ 1 \ 3) = US$		
		E <u>x</u> portieren		
	S <u>c</u> hließe	n	S <u>c</u> hließen	

Client certificates

Benutzer-Identifikationsanfrage ×					
Diese Website verlangt, dass Sie sich mit einem Zertifikat identifizieren: secure.cacert.org:443 Organisation: "CAcert Inc." Ausgestellt unter: "CAcert Inc."					
Wählen Sie ein Zertifikat, das als Identifikation vorgezeigt wird:					
Karol Babioch [02:C9:BF]					
Details des gewählten Zertifikats:					
Details des gewaniten Zertifikats: Ausgestellt auf: E=karol@babioch.de,CN=Karol Babioch Seriennummer: 02:C9:BF Gültig vom 24. September 2018, 11:38:45 GMT+2 bis 23. September 2020, 11:38:45 GMT+2 Schlüsselgebrauch: unterzeichne,Schlüssel- Verschlüsselung,Schlüssel-Vereinbarung E-Mail-Adressen: karol@babioch.de, karol@babioch.de Ausgestellt von: CN=CAcert Class 3 Beat OU=http://www.CAcert org O=CAcert lpc Diese Entscheidung merken					
Abbrechen OK					

Certificates

- Many attributes
 - Valid before
 - Valid after
 - Common name
 - Public key
 - Issuer
 - ...
- Binding between key pair and an identity

Problems with SSL/TLS

- General SSL/TLS criticism
 - Trusted Third Party \rightarrow Every CA can sign anything
 - Broken revocation
 - Key pinning challenging
 - etc., pp.
- Specific to client certificates
 - Support for client certificates (applications, protocols, etc.)
 - Verification of client certificates
 - Handling certificates correctly is challenging
 - Roll your own CA?
 - Privacy concerns (\rightarrow TLS 1.3?)

OpenPGP

OpenPGP basics

- RFC 4880
- Most widely used implementation: GnuPG (gpg)
- Allows
 - Encryption
 - Signatures / Verification
 - Authentication
- Decentral approach ("web of trust")
 - Everybody can create key pairs
 - Distribution via keyservers
 - Authentication via keysigning

OpenPGP example

----BEGIN PGP SIGNED MESSAGE-----Hash: SHA256

Hi,

this is a test message, contained in inline PGP.

Best regards, Karol Babioch ----BEGIN PGP SIGNATURE-----

iQIzBAEBCAAdFiEEbzQ4iM2eBJRwzXNEZoQkK1WQrXkFAluf6scACgkQZoQkK1WQ rXkLVQ//d+INPCfAaLunRvikbR144BXItck/29rIdsm+0QJyH8ZtfaFK0+3ud9zq BRCkpl878dU8k01MN1cwA6r3VvfSjEwmedyHJkUdFH+2yiki+p2j9U50cEfYs8T1 cjQxvmzpImead8RoXSl8j5rPVRseFVflxaACABDT2FlwDwGB3wrJLc245bFm/bdQ FGfl8Bhn/Q1Q53s5fjVMl9YPuml1zb0+Nw0rNssSfglX6lxXAP/fpnLbhCngrYab XI/ozC9gtyrdh56UxFZwnQ2m4o+zs5zhKW5jMsJzo0275fNizuhdH7lL0CtdPYD4 /d0iZS7Do5LD48hNYTiCEe7+S6zxbpdpCzKDdaFeSTNmY3lpIvFXvxW6j/hF/Lx6 6spXz0A4lUfc8ckLfmTUg+cspVL2lmNq1hRDc0Z0u+aBCKHr2XPHa0AVke9DcC5G bwhyEjr38jI00TN1WHAIrf8CXmDr4nw6900ZeM30C1hcfkmmZI7FwuU9i766qJk4 3y7RqjwTeztPvvTVumkpYNSIXrp+SApgRAr6Y/cYu5TcKbpr5vjjptQbLylVE0Dq KLzRT2N8iM/IHXuB87EnjkXGG1Ze0tWtT13ThIpGLnkXs0esCPsh7zBU6HI5RVQb 5pERXlNKknvpjKEuomRLEyDwzNz5MygoBY1YYmSBHDcgtjBufPs= =DW8u

----END PGP SIGNATURE-----

OpenPGP problems (1)

HOW TO USE PGP TO VERIFY THAT AN EMAIL IS AUTHENTIC:

OpenPGP problems (2)

- · Very inconvenient and difficult to use
 - Snowden vs. Glenn Greenwald
- Web of Trust
 - Trust models (pgp, classic, tofu, tofu+pgp, direct, always, auto)
 - Keysigning parties \rightarrow Crypto nerd overkill
 - Mail addresses are often not verified
- Keys are lost all of the time
- Unlimited lifetime → Bad practice
- Revocation
- Fake keys
- Key handle collision (short handles)
- Autocrypt !?!
 - \rightarrow In daily communication: Utterly broken (in my opinion)
- Good for automated signing and verification
 - Can be part of supply chain security
 - Software distribution

WebAuthn

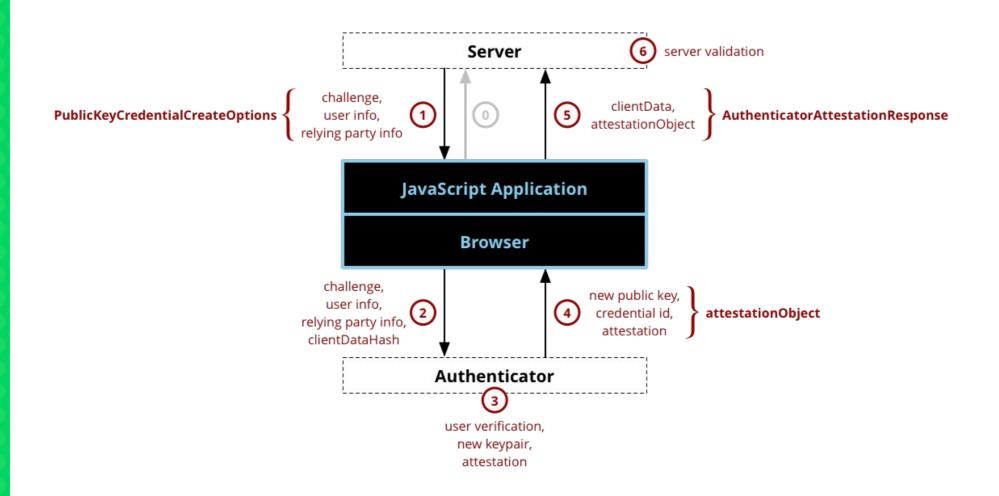
WebAuthn

- New emerging standard (W3C Candidate Recommendation, 7 August 2018)
- Supported by major browsers
- Derived from work previously done by FIDO Alliance (UAF, U2F)
- Mostly backwards-compatible with U2F
- Single factor or additional factor
- JavaScript-based API
- Allows for public-key cryptography in the browser through standardized API
 - Nothing to loose for service providers!

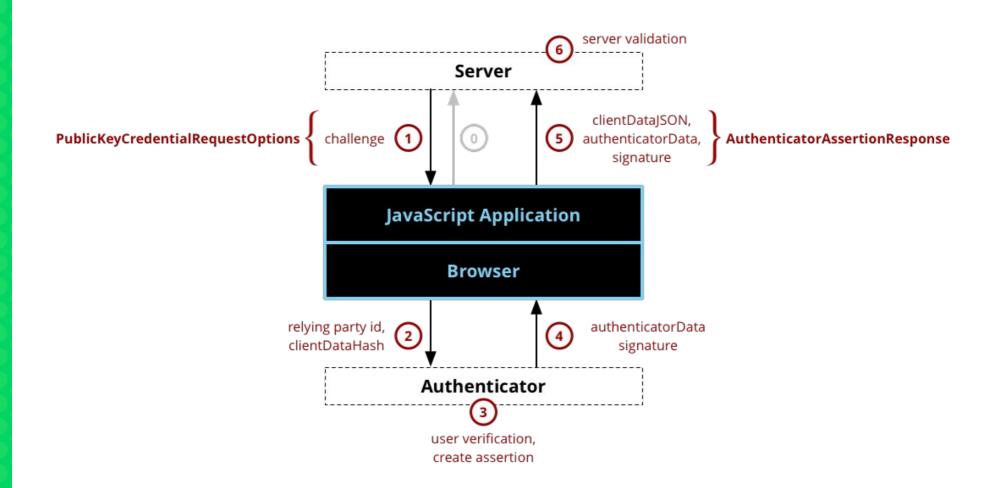
WebAuthn basics

- Server \rightarrow Relying party (RP)
 - Generates and delivers JavaScript
- Browser
 - Processes JavaScript \rightarrow Forwards request to authenticator
 - Acts as "proxy" between Authenticator and RP
- Authenticator
 - hardware token (USB, Bluetooth, NFC, etc.)
 - Software / operating system (e.g. Windows Hello (?))

WebAuthn steps


1.) Registration

- Create and register new public key


2.) Authentication

- Use previously registered public key to sign a challenge

WebAuthn registration

WebAuthn authentication

WebAuthn browser support

• Browser support

Desktop	Mobile				
Feature	Chrome	Firefox (Gecko)	Internet Explorer	Opera	Safari (WebKit)
Basic support	65	60 (60) ^[1]	No support	No support	No support
Desktop	Mobile				
Feature	Android Webview	Chrome for Android	Firefox Mobile (Gecko)	IE Phone Opera	Mobile Safari Mobile
Basic support	No support	No support	No support ^[1]	No support No supp	oort No support

WebAuthn challenges / problems

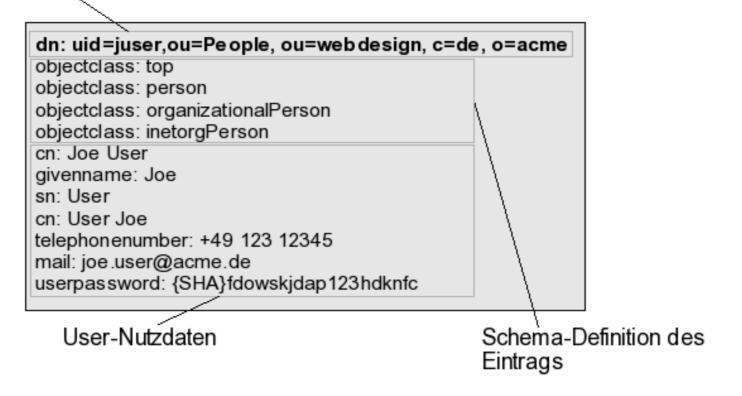
- Adoption, adoption, adoption
 - Browser support
 - Users
 - Servers & application
- Security concerns due to weak cryptography in standard (beginning of Aug 2018)
 - RSA: PKCS1v1.5 padding
 - ECC: ECDAA
 - \rightarrow https://paragonie.com/blog/2018/08/security-concerns-surrounding-webauthn-don-t-implement-ecdaa-yet

WebAuthn demo

- https://webauthn.bin.coffee/
- http://webauthndemo.appspot.com/
- https://webauthn.org/
- \rightarrow More on this (FIDO2/U2F) \rightarrow Second talk

FIDO2 / U2F -> Second talk

Central authentication schemes


LDAP

- Lightweight Directory Access Protocol
- Based on X500 (!= X509)
- Directory service (protocol & data format, etc.)
 - $\rightarrow\,$ Not an authentication protocol
- Central directory
 - Containing (among other things) user information
 - \rightarrow Can be used for authentication
- Used by many applications & appliances, etc.
- Terminology
 - Distinguished Name (DN) \rightarrow Username
 - Bind \rightarrow Authentication
- In most cases: Based on username & password \rightarrow Same problems

LDAP example

Directory Server Eintrag

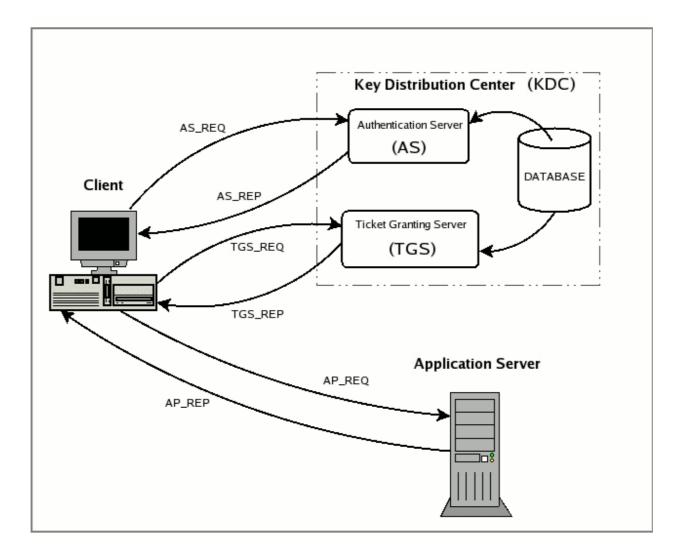
Distinguished Name

LDAP problems

- Central, but no Single-Sign-On (SSO)
- Requires LDAP understanding (protocol, structure, hierarchies, etc.)
- Old and "rusty"
 - Legacy password schemes, etc.
 - Un-encrypted by default
- Requires setup by administrator / operator
- \rightarrow Does not scale for users

- In fairness: Also supports other authentication schemes (SASL, Kerberos)

Federated authentication


Kerberos

Kerberos

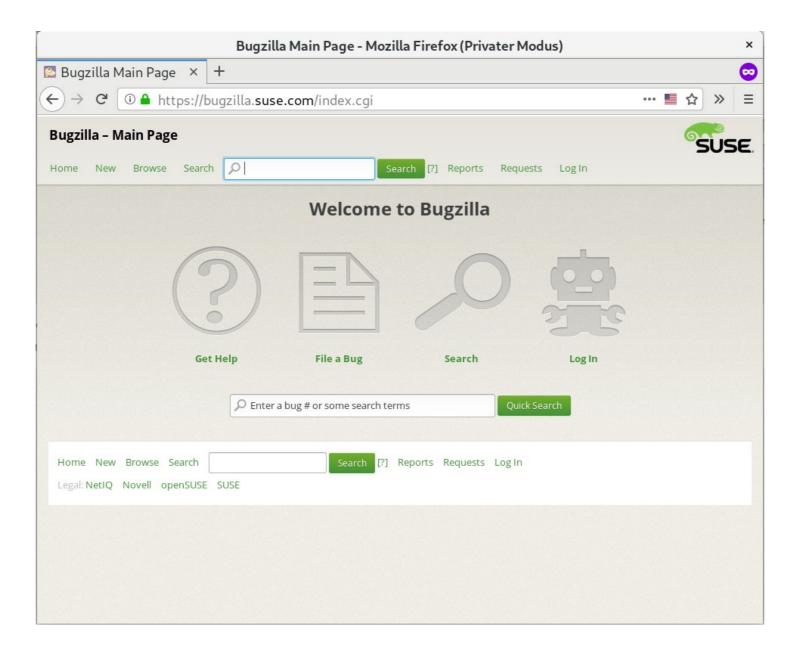
- Originally developed by MIT in the 80's
- Designed for Single-Sign-On
- Many implementations (e.g. Microsoft, MIT Kerberos, etc.)
- Current version: Kerberos 5
- Basic idea ("tickets")
 - Ticket-granting ticket (TGT, "master" ticket) can be obtained from central server (KDC)
 - TGT to get any additional tickets for services
 - Service tickets for individual services

- Tickets are short-lived, can be renewed and are mostly managed automatically in credential caches, and keytabs

Kerberos architecture

Kerberos problems / challenges

- Based upon shared secrets
 - Can be mitigated somewhat by PKINIT and OTP
 - TGTs are the key to the kingdom
 - Mitigation: Short life-time and renewal
 - Only files on your machine
 - Machines can be compromised
 - KDC contains all of the keys (un-encrypted!)
- Requires application support ("Kerberized")
 - Provided via GSSAPI (e.g. SSH, NFS, Firefox, Chrome, etc.)
- Requires initial setup (domain-specific)
 - Good within corporate network
 - Scales badly with many domains, etc.



SAML basics

- Security Assertion Markup Language
- Current version: 2.0
- Standardized in 2005 by OASIS
- XML-based
- Mostly used in academic and enterprise environments
- "Assertions" are passed between entities
- Identity Providers (IdP) \rightarrow Central service that authenticates users
 - Can use all sorts of mechanisms: Passwords, IPs, Kerberos, etc.
- Service Providers (SP) \rightarrow Services that rely on IdP for authentication
 - Does not care how IdP performs authentication, just "consumes" assertions

SAML basics

SAML basics

SUSE Login - Mozilla Firefox (Privater Modus) ×						
• SUSE Login × +		🗢				
$\leftarrow \rightarrow \mathbf{X}$ $\bigcirc \mathbf{A}$ https://login.mid	.microfocus.com/nidp/idff/sso?id=21&sid=0&option=credenti … ■ ☆ » =					
SUSE						
Please sign in User Name I Password Forgot Password Login Assistance Privacy Policy	••• •••	 Don't have an account? Get one account for Novell, SUSE, NetIQ, PartnerNet and openSUSE Access your products Submit service requests Manage user access Download patches Get product keys 				
© 2018 SUSE Careers Legal About	Contact Us <u>Twitter Linker</u>	<u>In</u> 8*				
Warten auf www.suse.com						

SAML example

<saml:Assertion

- xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"
- xmlns:xs="http://www.w3.org/2001/XMLSchema"
- xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
- ID="b07b804c-7c29-ea16-7300-4f3d6f7928ac"
- Version="2.0"
-IssueInstant="2004-12-05T09:22:05Z">
-<saml:Issuer>https://idp.example.org/SAML2</saml:Issuer>
- <ds:Signature
-xmlns:ds="http://www.w3.org/2000/09/xmldsig#">...</ds:Signature>
- <saml:Subject>
-<saml:NameID-Format="urn:oasis:names:tc:SAML:2.0:nameid-format:transient">3f7b3dcf-1674-4ecd-92c8-1544f346baf8</saml:NameID>
-<saml:SubjectConfirmation_Method="urn:oasis:names:tc:SAML:2.0:cm:bearer">
-Recipient="https://sp.example.com/SAML2/SSO/POST"
-NotOnOrAfter="2004-12-05T09:27:05Z"/>
- </saml:SubjectConfirmation>
- </saml:Subject>
- <<saml:AuthnStatement AuthnInstant="2004-12-05T09:22:00Z" SessionIndex="b07b804c-7c29-ea16-7300-4f3d6f7928ac">
- <saml:AuthnContext>
- </saml:AuthnContext>
- </saml:AuthnStatement>
- <saml:AttributeStatement>
- <saml:Attribute</pre>
-xmlns:x500="urn:oasis:names:tc:SAML:2.0:profiles:attribute:X500"
-x500:Encoding="LDAP"
-NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:uri"
- Name="urn:oid:1.3.6.1.4.1.5923.1.1.1.1"
-FriendlyName="eduPersonAffiliation">

- </saml:Attribute>
- </saml:AttributeStatement>
- </saml:Assertion>

SAML architecture

- Core

 \rightarrow Description of syntax, semantic, etc.

- Bindings

- HTTP Redirect, HTTP POST, HTTP Artifact, SOAP, PAOS
- \rightarrow Means of transportation of SAML messages

- Profiles

- Web Browser SSO Profile
- Enhanced Client or Proxy (ECP) Profile
- Single Logout Profile

- Metadata

- Description of URL endpoints, signing & encryption keys, etc.

SAML example metadata

<md:IDPSS0Descriptor

...protocolSupportEnumeration="urn:oasis:names:tc:SAML:2.0:protocol">

<ds:KeyInfo>...</ds:KeyInfo>

</md:KeyDescriptor>

....Binding="urn:oasis:names:tc:SAML:2.0:bindings:SOAP"

....Location="https://idp.example.org/SAML2/ArtifactResolution"/>

...<md:NameIDFormat>urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress</md:NameIDFormat>

... <md:NameIDFormat_urn:oasis:names:tc:SAML:2.0:nameid-format:transient</md:NameIDFormat>

<md:SingleSignOnService</pre>

....Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Redirect"

....Location="https://idp.example.org/SAML2/SSO/Redirect"/>

<md:SingleSignOnService</pre>

.....Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST"

....Location="https://idp.example.org/SAML2/SS0/POST"/>

<md:SingleSignOnService</pre>

....Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Artifact"

....Location="https://idp.example.org/SAML2/Artifact"/>

<saml:Attribute</pre>

....NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:uri"

Name="urn:oid:1.3.6.1.4.1.5923.1.1.1.1"

....FriendlyName="eduPersonAffiliation">

<saml:AttributeValue>member</saml:AttributeValue>

.....<saml:AttributeValue>student</saml:AttributeValue>

.....<saml:AttributeValue>faculty</saml:AttributeValue>

.....<saml:AttributeValue>employee</saml:AttributeValue>

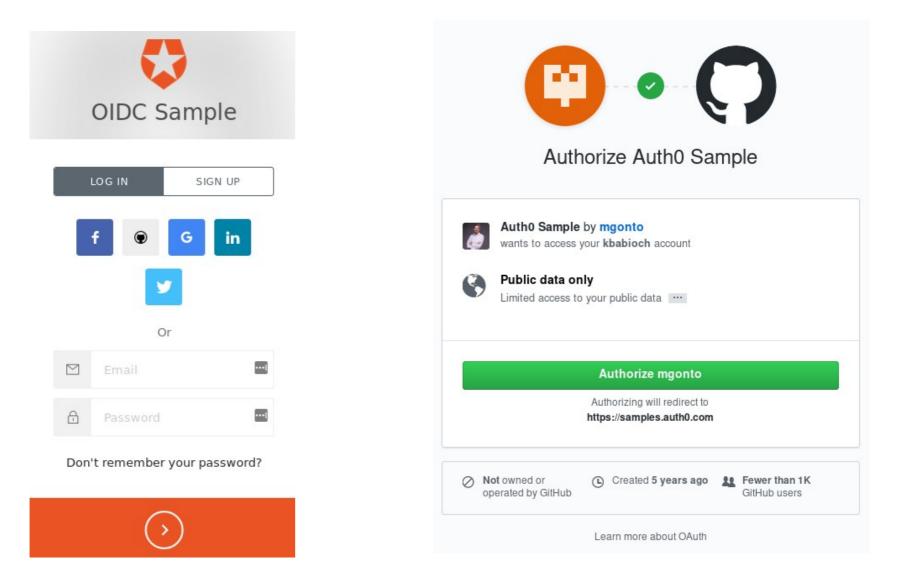
.....<saml:AttributeValue>staff</saml:AttributeValue>

</saml:Attribute>

</md:IDPSS0Descriptor>

SAML challenges

- Not universal \rightarrow Requires application support
 - \rightarrow Many libraries are available
- Requires initial setup (metadata exchange)
- Requires maintenance (key rollovers, etc.)
- No useful auto discovery (only within a domain)

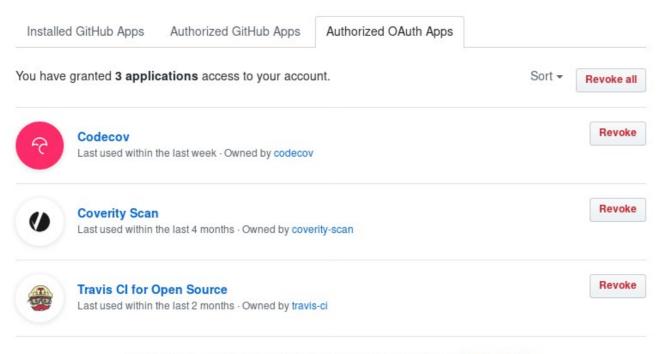

OpenID Connect

Karol Babioch Security Engineer kbabioch@suse.de

OpenID Connect

- Published 2014 (by the OpenID Foundation)
- Based on OAuth 2.0
 - \rightarrow "Abuses" authorization for authentication
- Allows Single-Sign-On (SSO)
- Feature-wise similar to SAML
 - REST-API
 - JSON data
 - \rightarrow Easy to consume (web applications, apps on smartphones, etc.)
- Terminology
 - Relying Party (RP)
 - Identity Provider (IdP)

OpenID Connect



OpenID Connect tokens

- Authorization tokens are managed by the user

 \rightarrow Access can be revoked

Applications

() Read more about connecting with third-party applications at GitHub Help.

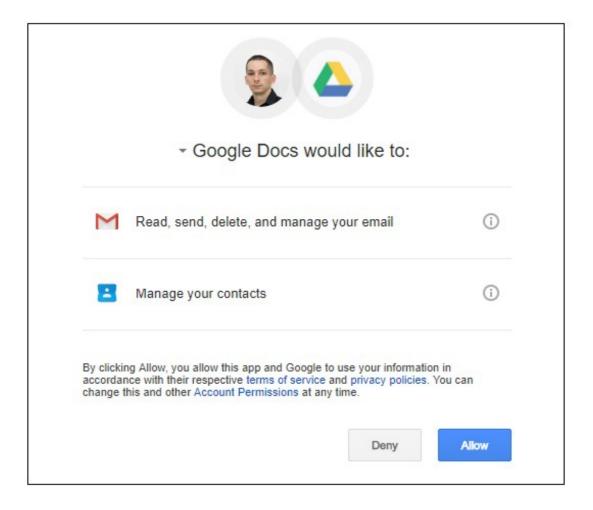
OpenID Connect challenges

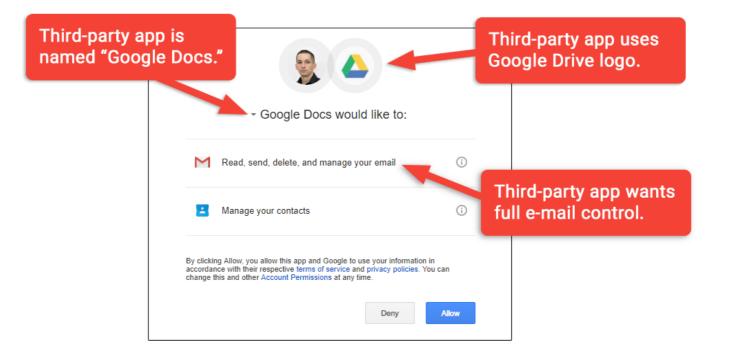
- Not universal \rightarrow Requires application support
 - \rightarrow Many libraries are available
- Privacy concerns?
- "Phishing" is still possible with OAuth 2.0
 - \rightarrow There have been "worms"
- No signing / encryption between service provider and identity provider
 - \rightarrow "Only" TLS for transport
- Check tokens regularly :-)

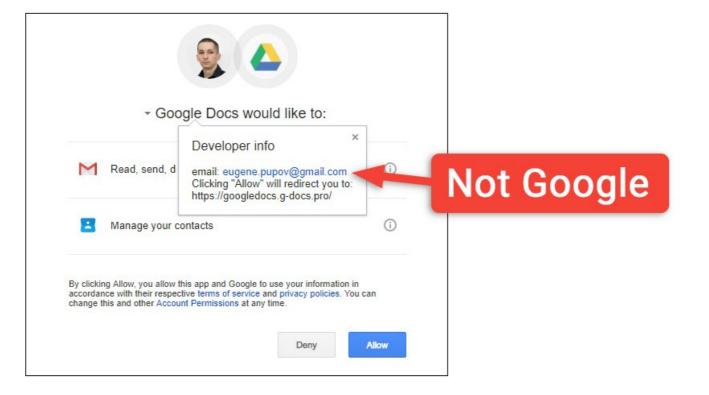
	Testing - Invitation to view D Inbox x		
	+	Ron Amadeo (via Google Docs) <drive-shares-noreply@google.cor (0="" 4:54="" ago)="" me="" minutes="" pm="" th="" to="" ∊<="" ☆=""><th>* -</th></drive-shares-noreply@google.cor>	* -
Real E-ma	il	Ron Amadeo has invited you to view the following document: Testing Open In Docs	
		Google Docs: Create and edit documents online. Google Inc. 1600 Amphitheatre Parkway, Mountain View, CA 94043, USA You have received this email because someone shared a document with you from Google Docs.	

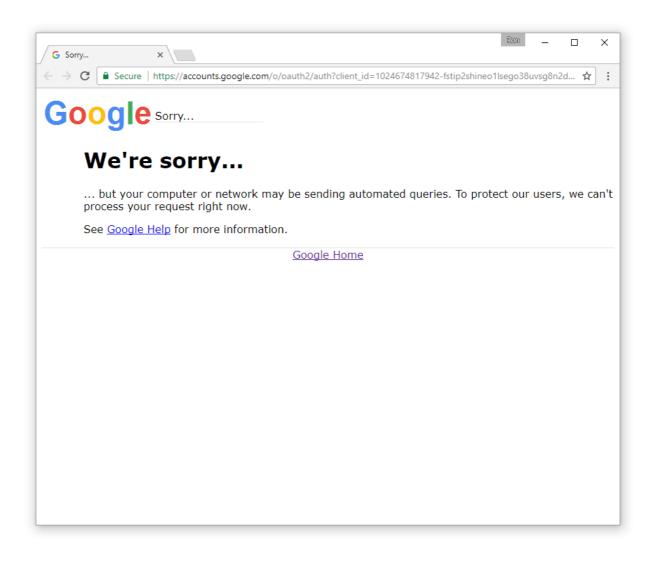
Google

Choose an account


Ron Amadeo ronamadeo@gmail.com




Ron Amadeo ron.amadeo@arstechnica.com >


>

Add account

Conclusion

Karol Babioch Security Engineer kbabioch@suse.de

Take-away messages

- Enable two factor authentication where-ever possible

- Annoy / blame service providers that do not yet support it
- Use password manager
 - teach your friends and family how to use them
- Use OAuth 2.0 (OpenID Connect) where-ever possible?
- Check tokens regularly, re-evaluate if still needed ...

