
The Authentication Jungle
An overview of all sorts of authentication technologies

Karol Babioch

Security Engineer

kbabioch@suse.de



2

New authentication standards ...



3

Some authentication technologies ...



- Authentication theory
- “Simple” authentication schemes
- Centralized authentication schemes
- Federated authentication schemes
- Conclusion

Karol Babioch

Security Engineer

kbabioch@suse.de



Authentication theory

Karol Babioch

Security Engineer

kbabioch@suse.de



6

What is authentication?

In our context: Mostly concerned about user authentication

→ Who am I communicating with?

“[…] the act of confirming the truth of an attribute of a 
single piece of data [...]”

(Wikipedia)



7

Attributes for authentication

● Something you know
● Secrets (Password, PIN, code, etc.)

● Something you have
● Physical keys
● Hardware tokens (Smart card, YubiKey, etc.)

→ Should be difficult to clone 

● Something you are
● Fingerprint
● Iris
● Face recognition



8

Challenges for authentication technologies

- Security
– Resiliency to guessing (brute force, online, offline)

– Resiliency to phishing

– Resiliency to theft

– Resiliency to physical observation

– Resiliency to internal observation

– No trusted third parties

– Explicit user-consent

– Unlinkability

- Usability
– Memorywise effortless

– Scalable for users

– Nothing to carry

– Easy recovery from loss

- Deployability
– Cost per user

– Server compatible

– Browser compatible

– Maturity

– Non proprietary



9

Authentication vs. Authorization

Authentication (AuthN, A1, Au)

→ Who am I communicating with?

Authorization (AuthZ, AuthR, A2, Az)

→ What am I allowed to do?

→ Most of the time: Tightly coupled



“Simple” authentication schemes

Karol Babioch

Security Engineer

kbabioch@suse.de



Passwords

Karol Babioch

Security Engineer

kbabioch@suse.de



12

Password-based logins

● Apparently simple to use
● Apparently easy to implement (“string compare”)
● Universal across all domains/contexts
● Recommendations & best practices (NIST, etc.)



13

Problems with passwords

● Weak passwords
● Re-usage across different domains/contexts
● Phishing
● Static
● Breaches
● User’s responsibility

● Chocolate study
● Easy to remember = Easy to guess



14

Experts get it wrong

• NIST Special Publication 800-63. Appendix A
● Originally from 2003
● Based on no real data (not available)
● Expiration after x days
● No re-usage of last x passwords
● Different character classes: Special character, numbers, big and small caps
● Example: P@ssW0rd123!

→Users still choose easy-to-guess passwords
– Less entropy than expected

– Regular changes bad idea
• Stolen credentials are used right away (not after x days)

• weak passwords

• Workaround: password1 → password2 → password3 → password1



15

Fun with password strength



16

haveibeenpwned.com

• One (of many) password databases based on dumps (> 500 million passwords)
• Search for your account in existing dumps
• Notify when account appears in new dumps
• API / datasets for querying passwords (k-anonymity)
• Should be checked during account creation / password change



17

Mitigations

• Pro-active password checks during account creation and password changes
• Re-active leak monitoring (i.e. haveibeenpwned.com):

– Single accounts

– Whole domain

• Use and encourage password manager
• No annoying limitations for passwords
• Multifactor authentication

• Other authentication schemes
– Single-Sign-On & Federation



Crypto 101

Karol Babioch

Security Engineer

kbabioch@suse.de



19

Crypto 101: Cryptographic hash functions

• Returns a (fixed-size) output (“hash-value”) for any input
– Easy to calculate the hash value value for any given data

– Computationally difficult to calculate an input with a given hash value

– Unlikely that two (slightly) different messages have the same hash value

• H(message) → output
• Examples

– SHA1 (e.g. git)

– SHA2 (256, 384, 512)

– SHA3

– MD5

– MD4

• Use cases
– Message integrity

– Digital signatures

– Authentication



20

Crypto 101: Cryptographic hash functions



21

Crypto 101: HMAC

• Hash-based message authentication code
• Defined in RFC2104
• Any cryptographic hash function can be used
• HMAC(secret, message) → output [hash]

• Examples

– HMAC-MD5

– HMAC-SHA256

– HMAC-SHA3

• Use cases

– data integrity

– authentication



Multifactor authentication

Karol Babioch

Security Engineer

kbabioch@suse.de



23

Multifactor authentication to the rescue

● Basic idea: Use multiple factors for authentication (passwords is not sufficient)
● 2FA = Two-factor authentication
● MFA = Multi-factor authentication
● Examples:

● One-Time passwords (OTP)
● Chip & TAN
● password & certificate (OpenVPN, etc.)

• Different channels:
– SMS

– Smart card (chipTAN)

– (Smartphone) apps

– Different devices (Notifications from Google on Android, etc.)

– Hardware tokens (RSA SecurID, YubiKey, U2F, etc.)



24

twofactorauth.org



25

OATH: TOTP & HOTP

● Standardized by OATH (!= OAuth)

● Many software implementations & hardware tokens

● Requires initial setup to establish shared secret between provider and user
● e.g. QR code

● TOTP: Time-based OTP
● Code: HMAC(sharedSecret, timestamp)

● HOTP: Event-based OTP
● Code: HMAC(sharedSecret, counter)



26

Soft-token implementations

otpauth://totp/label?secret=secret&issuer=issuer



27

Hardware OTP tokens

● Shared secret is stored in hardware

→ Cannot be duplicated

● Requires enrollment process

● More on hardware tokens → second talk



28

Yubico OTP

● Hardware token with USB interface
● Emulating USB keyboard
● Multiple slots

● Short push (~ 0.5 sec)
● Long push (~ 2 sec)

● Push button → User consent

● Supports OATH
● HOTP
● TOTP (requires software on host)
● Yubico OTP

● Many other modes of operation → second talk



29

Yubico OTP explanation



30

Problems with multifactor authentication

● Based on shared secret

→ Still something to loose (data breach)
● Trusted third party (in case of RSA, Yubico OTP, etc.)
● Broken fallback routines / recovery processes
● Inconvenient (i.e. smartphone not available, etc.)
● No inherent MitM protection (active attacks, phishing, session hijacking)
● Scales badly

● Requires setup for each service
● Requires dedicated key / slot for each service
● Cost per device



Crypto 101

Karol Babioch

Security Engineer

kbabioch@suse.de



32

Crypto 101: Symmetric cryptography

• Encryption and decryption are using the same secret (key)
• Examples:

– AES

– DES, 3DES

– Blowfish

– Twofish

– RC4

• Block cipher modes:
– ECB

– CBC

– OFB

– XTS



33

Crypto 101: Asymmetric Cryptography

• Two keys (referred to as a key pair)
– Public

– Private

• Examples:
– RSA

– DH (Diffie Hellman)

– ECC (Elliptic Curve Cryptography)

• Use cases
– Encryption

– Authentication

– Key agreement

– Signatures

– Verification

• Challenge: Key exchange, authenticity of public keys



34

Crypto 101: Asymmetric Cryptography



SSL/TLS (X509)

Karol Babioch

Security Engineer

kbabioch@suse.de



36

SSL/TLS basics

• Prevalent throughout the Internet
• Can basically be used with all protocols (https, ldaps, imaps, etc.)
• Provides confidentiality, integrity, authentication
• Mostly: One-way authentication (Browser)
• Chain of trust: Certificate authority (CA) →… (intermediate CA) … → 

certificate 
• PKI: Public-key infrastructure

• Interesting to us: Client certificates

– Can be offloaded to hardware → Second talk



37

SSL/TLS handshake



38

Server certificates



39

Client certificates



40

Certificates

• Many attributes
– Valid before

– Valid after

– Common name

– Public key

– Issuer

– ...

• Binding between key pair and an identity



41

Problems with SSL/TLS

• General SSL/TLS criticism

– Trusted Third Party → Every CA can sign anything

– Broken revocation

– Key pinning challenging

– etc., pp.

• Specific to client certificates

– Support for client certificates (applications, protocols, etc.)

– Verification of client certificates

– Handling certificates correctly is challenging

– Roll your own CA?

– Privacy concerns (→TLS 1.3?)



OpenPGP

Karol Babioch

Security Engineer

kbabioch@suse.de



43

OpenPGP basics

• RFC 4880
• Most widely used implementation: GnuPG (gpg)
• Allows

– Encryption

– Signatures / Verification

– Authentication

• Decentral approach (“web of trust”)
– Everybody can create key pairs

– Distribution via keyservers

– Authentication via keysigning



44

OpenPGP example



45

OpenPGP problems (1)



46

OpenPGP problems (2)

• Very inconvenient and difficult to use
– Snowden vs. Glenn Greenwald

• Web of Trust
• Trust models (pgp, classic, tofu, tofu+pgp, direct, always, auto)

• Keysigning parties → Crypto nerd overkill

• Mail addresses are often not verified

• Keys are lost all of the time
• Unlimited lifetime → Bad practice
• Revocation
• Fake keys
• Key handle collision (short handles)
• Autocrypt !?!

→ In daily communication: Utterly broken (in my opinion)

• Good for automated signing and verification
– Can be part of supply chain security

– Software distribution



WebAuthn

Karol Babioch

Security Engineer

kbabioch@suse.de



48

WebAuthn

• New emerging standard (W3C Candidate Recommendation, 7 August 2018)
• Supported by major browsers
• Derived from work previously done by FIDO Alliance (UAF, U2F)
• Mostly backwards-compatible with U2F
• Single factor or additional factor
• JavaScript-based API
• Allows for public-key cryptography in the browser through standardized API

– Nothing to loose for service providers!



49

WebAuthn basics

• Server → Relying party (RP)
– Generates and delivers JavaScript

• Browser
– Processes JavaScript → Forwards request to authenticator

– Acts as “proxy” between Authenticator and RP

• Authenticator
– hardware token (USB, Bluetooth, NFC, etc.)

– Software / operating system (e.g. Windows Hello (?))



50

WebAuthn steps

1.) Registration
– Create and register new public key

2.) Authentication
– Use previously registered public key to sign a challenge



51

WebAuthn registration



52

WebAuthn authentication



53

WebAuthn browser support

• Browser support



54

WebAuthn challenges / problems

• Adoption, adoption, adoption
– Browser support

– Users

– Servers & application

• Security concerns due to weak cryptography in standard (beginning of Aug 2018)
– RSA: PKCS1v1.5 padding

– ECC: ECDAA

→ https://paragonie.com/blog/2018/08/security-concerns-surrounding-webauthn-don-t-implement-ecdaa-yet

https://paragonie.com/blog/2018/08/security-concerns-surrounding-webauthn-don-t-implement-ecdaa-yet


55

WebAuthn demo

- https://webauthn.bin.coffee/

- http://webauthndemo.appspot.com/

- https://webauthn.org/

→ More on this (FIDO2/U2F) → Second talk

https://webauthn.bin.coffee/
http://webauthndemo.appspot.com/
https://webauthn.org/


FIDO2 / U2F → Second talk

Karol Babioch

Security Engineer

kbabioch@suse.de



Central authentication schemes

Karol Babioch

Security Engineer

kbabioch@suse.de



LDAP

Karol Babioch

Security Engineer

kbabioch@suse.de



59

LDAP

- Lightweight Directory Access Protocol

- Based on X500 (!= X509)

- Directory service (protocol & data format, etc.)
→ Not an authentication protocol

- Central directory
– Containing (among other things) user information

→ Can be used for authentication

- Used by many applications & appliances, etc.

- Terminology
– Distinguished Name (DN) → Username

– Bind → Authentication

- In most cases: Based on username & password → Same problems



60

LDAP example



61

LDAP problems

- Central, but no Single-Sign-On (SSO)

- Requires LDAP understanding (protocol, structure, hierarchies, etc.)

- Old and “rusty”

– Legacy password schemes, etc.

– Un-encrypted by default

- Requires setup by administrator / operator

→ Does not scale for users

- In fairness: Also supports other authentication schemes (SASL, 
Kerberos)



Federated authentication

Karol Babioch

Security Engineer

kbabioch@suse.de



Kerberos

Karol Babioch

Security Engineer

kbabioch@suse.de



69

Kerberos

- Originally developed by MIT in the 80’s

- Designed for Single-Sign-On

- Many implementations (e.g. Microsoft, MIT Kerberos, etc.)

- Current version: Kerberos 5

- Basic idea (“tickets”)
– Ticket-granting ticket (TGT, “master” ticket) can be obtained from central server (KDC)

– TGT to get any additional tickets for services

– Service tickets for individual services

- Tickets are short-lived, can be renewed and are mostly managed 
automatically in credential caches, and keytabs 



70

Kerberos architecture



71

Kerberos problems / challenges

- Based upon shared secrets

– Can be mitigated somewhat by PKINIT and OTP

– TGTs are the key to the kingdom
• Mitigation: Short life-time and renewal

• Only files on your machine
• Machines can be compromised

- KDC contains all of the keys (un-encrypted!) 

- Requires application support (“Kerberized”)

– Provided via GSSAPI (e.g. SSH, NFS, Firefox, Chrome, etc.)

- Requires initial setup (domain-specific)

– Good within corporate network

– Scales badly with many domains, etc.



SAML

Karol Babioch

Security Engineer

kbabioch@suse.de



73

SAML basics

- Security Assertion Markup Language

- Current version: 2.0

- Standardized in 2005 by OASIS

- XML-based

- Mostly used in academic and enterprise environments

- “Assertions” are passed between entities

- Identity Providers (IdP) → Central service that authenticates users
– Can use all sorts of mechanisms: Passwords, IPs, Kerberos, etc.

- Service Providers (SP) → Services that rely on IdP for authentication
– Does not care how IdP performs authentication, just “consumes” assertions



74

SAML basics



75

SAML basics



76

SAML example



77

SAML architecture

- Core
→Description of syntax, semantic, etc.

- Bindings
– HTTP Redirect, HTTP POST, HTTP Artifact, SOAP, PAOS

→ Means of transportation of SAML messages

- Profiles
– Web Browser SSO Profile

– Enhanced Client or Proxy (ECP) Profile

– Single Logout Profile

- Metadata
– Description of URL endpoints, signing & encryption keys, etc.



78

SAML example metadata



79

SAML challenges

- Not universal → Requires application support
→ Many libraries are available

- Requires initial setup (metadata exchange)

- Requires maintenance (key rollovers, etc.)

- No useful auto discovery (only within a domain)



OpenID Connect

Karol Babioch

Security Engineer

kbabioch@suse.de



81

OpenID Connect

- Published 2014 (by the OpenID Foundation)

- Based on OAuth 2.0
→ “Abuses” authorization for authentication

- Allows Single-Sign-On (SSO)

- Feature-wise similar to SAML
- REST-API

- JSON data

→ Easy to consume (web applications, apps on smartphones, etc.)

- Terminology
– Relying Party (RP)

– Identity Provider (IdP)



82

OpenID Connect



83

OpenID Connect tokens

- Authorization tokens are managed by the user
→ Access can be revoked



84

OpenID Connect challenges

- Not universal → Requires application support
→ Many libraries are available

- Privacy concerns?

- “Phishing” is still possible with OAuth 2.0
→ There have been “worms”

- No signing / encryption between service provider and identity provider
→ “Only” TLS for transport

- Check tokens regularly :-)



85

OAuth 2.0 “phishing”



86

OAuth 2.0 “phishing”



87

OAuth 2.0 “phishing”



88

OAuth 2.0 “phishing”



89

OAuth 2.0 “phishing”



90

OAuth 2.0 “phishing”



Conclusion

Karol Babioch

Security Engineer

kbabioch@suse.de



92

Take-away messages

- Enable two factor authentication where-ever possible
– Annoy / blame service providers that do not yet support it

- Use password manager
– teach your friends and family how to use them

- Use OAuth 2.0 (OpenID Connect) where-ever possible?

- Check tokens regularly, re-evaluate if still needed ...




	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57
	Folie 58
	Folie 59
	Folie 60
	Folie 61
	Folie 67
	Folie 68
	Folie 69
	Folie 70
	Folie 71
	Folie 72
	Folie 73
	Folie 74
	Folie 75
	Folie 76
	Folie 77
	Folie 78
	Folie 79
	Folie 80
	Folie 81
	Folie 82
	Folie 83
	Folie 84
	Folie 85
	Folie 86
	Folie 87
	Folie 88
	Folie 89
	Folie 90
	Folie 91
	Folie 92
	Folie 93

