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New authentication standards ...
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Some authentication technologies ...



- Authentication theory
- “Simple” authentication schemes
- Centralized authentication schemes
- Federated authentication schemes
- Conclusion
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What is authentication?

In our context: Mostly concerned about user authentication

→ Who am I communicating with?

“[…] the act of confirming the truth of an attribute of a 
single piece of data [...]”

(Wikipedia)
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Attributes for authentication

● Something you know
● Secrets (Password, PIN, code, etc.)

● Something you have
● Physical keys
● Hardware tokens (Smart card, YubiKey, etc.)

→ Should be difficult to clone 

● Something you are
● Fingerprint
● Iris
● Face recognition
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Challenges for authentication technologies

- Security
– Resiliency to guessing (brute force, online, offline)

– Resiliency to phishing

– Resiliency to theft

– Resiliency to physical observation

– Resiliency to internal observation

– No trusted third parties

– Explicit user-consent

– Unlinkability

- Usability
– Memorywise effortless

– Scalable for users

– Nothing to carry

– Easy recovery from loss

- Deployability
– Cost per user

– Server compatible

– Browser compatible

– Maturity

– Non proprietary
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Authentication vs. Authorization

Authentication (AuthN, A1, Au)

→ Who am I communicating with?

Authorization (AuthZ, AuthR, A2, Az)

→ What am I allowed to do?

→ Most of the time: Tightly coupled
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Password-based logins

● Apparently simple to use
● Apparently easy to implement (“string compare”)
● Universal across all domains/contexts
● Recommendations & best practices (NIST, etc.)
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Problems with passwords

● Weak passwords
● Re-usage across different domains/contexts
● Phishing
● Static
● Breaches
● User’s responsibility

● Chocolate study
● Easy to remember = Easy to guess
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Experts get it wrong

• NIST Special Publication 800-63. Appendix A
● Originally from 2003
● Based on no real data (not available)
● Expiration after x days
● No re-usage of last x passwords
● Different character classes: Special character, numbers, big and small caps
● Example: P@ssW0rd123!

→Users still choose easy-to-guess passwords
– Less entropy than expected

– Regular changes bad idea
• Stolen credentials are used right away (not after x days)

• weak passwords

• Workaround: password1 → password2 → password3 → password1
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Fun with password strength
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haveibeenpwned.com

• One (of many) password databases based on dumps (> 500 million passwords)
• Search for your account in existing dumps
• Notify when account appears in new dumps
• API / datasets for querying passwords (k-anonymity)
• Should be checked during account creation / password change
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Mitigations

• Pro-active password checks during account creation and password changes
• Re-active leak monitoring (i.e. haveibeenpwned.com):

– Single accounts

– Whole domain

• Use and encourage password manager
• No annoying limitations for passwords
• Multifactor authentication

• Other authentication schemes
– Single-Sign-On & Federation
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Crypto 101: Cryptographic hash functions

• Returns a (fixed-size) output (“hash-value”) for any input
– Easy to calculate the hash value value for any given data

– Computationally difficult to calculate an input with a given hash value

– Unlikely that two (slightly) different messages have the same hash value

• H(message) → output
• Examples

– SHA1 (e.g. git)

– SHA2 (256, 384, 512)

– SHA3

– MD5

– MD4

• Use cases
– Message integrity

– Digital signatures

– Authentication
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Crypto 101: Cryptographic hash functions
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Crypto 101: HMAC

• Hash-based message authentication code
• Defined in RFC2104
• Any cryptographic hash function can be used
• HMAC(secret, message) → output [hash]

• Examples

– HMAC-MD5

– HMAC-SHA256

– HMAC-SHA3

• Use cases

– data integrity

– authentication
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Multifactor authentication to the rescue

● Basic idea: Use multiple factors for authentication (passwords is not sufficient)
● 2FA = Two-factor authentication
● MFA = Multi-factor authentication
● Examples:

● One-Time passwords (OTP)
● Chip & TAN
● password & certificate (OpenVPN, etc.)

• Different channels:
– SMS

– Smart card (chipTAN)

– (Smartphone) apps

– Different devices (Notifications from Google on Android, etc.)

– Hardware tokens (RSA SecurID, YubiKey, U2F, etc.)
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twofactorauth.org
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OATH: TOTP & HOTP

● Standardized by OATH (!= OAuth)

● Many software implementations & hardware tokens

● Requires initial setup to establish shared secret between provider and user
● e.g. QR code

● TOTP: Time-based OTP
● Code: HMAC(sharedSecret, timestamp)

● HOTP: Event-based OTP
● Code: HMAC(sharedSecret, counter)
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Soft-token implementations

otpauth://totp/label?secret=secret&issuer=issuer
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Hardware OTP tokens

● Shared secret is stored in hardware

→ Cannot be duplicated

● Requires enrollment process

● More on hardware tokens → second talk



28

Yubico OTP

● Hardware token with USB interface
● Emulating USB keyboard
● Multiple slots

● Short push (~ 0.5 sec)
● Long push (~ 2 sec)

● Push button → User consent

● Supports OATH
● HOTP
● TOTP (requires software on host)
● Yubico OTP

● Many other modes of operation → second talk
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Yubico OTP explanation
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Problems with multifactor authentication

● Based on shared secret

→ Still something to loose (data breach)
● Trusted third party (in case of RSA, Yubico OTP, etc.)
● Broken fallback routines / recovery processes
● Inconvenient (i.e. smartphone not available, etc.)
● No inherent MitM protection (active attacks, phishing, session hijacking)
● Scales badly

● Requires setup for each service
● Requires dedicated key / slot for each service
● Cost per device
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Crypto 101: Symmetric cryptography

• Encryption and decryption are using the same secret (key)
• Examples:

– AES

– DES, 3DES

– Blowfish

– Twofish

– RC4

• Block cipher modes:
– ECB

– CBC

– OFB

– XTS
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Crypto 101: Asymmetric Cryptography

• Two keys (referred to as a key pair)
– Public

– Private

• Examples:
– RSA

– DH (Diffie Hellman)

– ECC (Elliptic Curve Cryptography)

• Use cases
– Encryption

– Authentication

– Key agreement

– Signatures

– Verification

• Challenge: Key exchange, authenticity of public keys
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Crypto 101: Asymmetric Cryptography
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SSL/TLS basics

• Prevalent throughout the Internet
• Can basically be used with all protocols (https, ldaps, imaps, etc.)
• Provides confidentiality, integrity, authentication
• Mostly: One-way authentication (Browser)
• Chain of trust: Certificate authority (CA) →… (intermediate CA) … → 

certificate 
• PKI: Public-key infrastructure

• Interesting to us: Client certificates

– Can be offloaded to hardware → Second talk
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SSL/TLS handshake
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Server certificates
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Client certificates
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Certificates

• Many attributes
– Valid before

– Valid after

– Common name

– Public key

– Issuer

– ...

• Binding between key pair and an identity
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Problems with SSL/TLS

• General SSL/TLS criticism

– Trusted Third Party → Every CA can sign anything

– Broken revocation

– Key pinning challenging

– etc., pp.

• Specific to client certificates

– Support for client certificates (applications, protocols, etc.)

– Verification of client certificates

– Handling certificates correctly is challenging

– Roll your own CA?

– Privacy concerns (→TLS 1.3?)
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OpenPGP basics

• RFC 4880
• Most widely used implementation: GnuPG (gpg)
• Allows

– Encryption

– Signatures / Verification

– Authentication

• Decentral approach (“web of trust”)
– Everybody can create key pairs

– Distribution via keyservers

– Authentication via keysigning
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OpenPGP example
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OpenPGP problems (1)
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OpenPGP problems (2)

• Very inconvenient and difficult to use
– Snowden vs. Glenn Greenwald

• Web of Trust
• Trust models (pgp, classic, tofu, tofu+pgp, direct, always, auto)

• Keysigning parties → Crypto nerd overkill

• Mail addresses are often not verified

• Keys are lost all of the time
• Unlimited lifetime → Bad practice
• Revocation
• Fake keys
• Key handle collision (short handles)
• Autocrypt !?!

→ In daily communication: Utterly broken (in my opinion)

• Good for automated signing and verification
– Can be part of supply chain security

– Software distribution



WebAuthn

Karol Babioch

Security Engineer

kbabioch@suse.de



48

WebAuthn

• New emerging standard (W3C Candidate Recommendation, 7 August 2018)
• Supported by major browsers
• Derived from work previously done by FIDO Alliance (UAF, U2F)
• Mostly backwards-compatible with U2F
• Single factor or additional factor
• JavaScript-based API
• Allows for public-key cryptography in the browser through standardized API

– Nothing to loose for service providers!
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WebAuthn basics

• Server → Relying party (RP)
– Generates and delivers JavaScript

• Browser
– Processes JavaScript → Forwards request to authenticator

– Acts as “proxy” between Authenticator and RP

• Authenticator
– hardware token (USB, Bluetooth, NFC, etc.)

– Software / operating system (e.g. Windows Hello (?))
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WebAuthn steps

1.) Registration
– Create and register new public key

2.) Authentication
– Use previously registered public key to sign a challenge
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WebAuthn registration
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WebAuthn authentication
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WebAuthn browser support

• Browser support
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WebAuthn challenges / problems

• Adoption, adoption, adoption
– Browser support

– Users

– Servers & application

• Security concerns due to weak cryptography in standard (beginning of Aug 2018)
– RSA: PKCS1v1.5 padding

– ECC: ECDAA

→ https://paragonie.com/blog/2018/08/security-concerns-surrounding-webauthn-don-t-implement-ecdaa-yet

https://paragonie.com/blog/2018/08/security-concerns-surrounding-webauthn-don-t-implement-ecdaa-yet
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WebAuthn demo

- https://webauthn.bin.coffee/

- http://webauthndemo.appspot.com/

- https://webauthn.org/

→ More on this (FIDO2/U2F) → Second talk

https://webauthn.bin.coffee/
http://webauthndemo.appspot.com/
https://webauthn.org/
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LDAP

- Lightweight Directory Access Protocol

- Based on X500 (!= X509)

- Directory service (protocol & data format, etc.)
→ Not an authentication protocol

- Central directory
– Containing (among other things) user information

→ Can be used for authentication

- Used by many applications & appliances, etc.

- Terminology
– Distinguished Name (DN) → Username

– Bind → Authentication

- In most cases: Based on username & password → Same problems
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LDAP example
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LDAP problems

- Central, but no Single-Sign-On (SSO)

- Requires LDAP understanding (protocol, structure, hierarchies, etc.)

- Old and “rusty”

– Legacy password schemes, etc.

– Un-encrypted by default

- Requires setup by administrator / operator

→ Does not scale for users

- In fairness: Also supports other authentication schemes (SASL, 
Kerberos)
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Kerberos

- Originally developed by MIT in the 80’s

- Designed for Single-Sign-On

- Many implementations (e.g. Microsoft, MIT Kerberos, etc.)

- Current version: Kerberos 5

- Basic idea (“tickets”)
– Ticket-granting ticket (TGT, “master” ticket) can be obtained from central server (KDC)

– TGT to get any additional tickets for services

– Service tickets for individual services

- Tickets are short-lived, can be renewed and are mostly managed 
automatically in credential caches, and keytabs 
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Kerberos architecture
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Kerberos problems / challenges

- Based upon shared secrets

– Can be mitigated somewhat by PKINIT and OTP

– TGTs are the key to the kingdom
• Mitigation: Short life-time and renewal

• Only files on your machine
• Machines can be compromised

- KDC contains all of the keys (un-encrypted!) 

- Requires application support (“Kerberized”)

– Provided via GSSAPI (e.g. SSH, NFS, Firefox, Chrome, etc.)

- Requires initial setup (domain-specific)

– Good within corporate network

– Scales badly with many domains, etc.
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SAML basics

- Security Assertion Markup Language

- Current version: 2.0

- Standardized in 2005 by OASIS

- XML-based

- Mostly used in academic and enterprise environments

- “Assertions” are passed between entities

- Identity Providers (IdP) → Central service that authenticates users
– Can use all sorts of mechanisms: Passwords, IPs, Kerberos, etc.

- Service Providers (SP) → Services that rely on IdP for authentication
– Does not care how IdP performs authentication, just “consumes” assertions
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SAML basics
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SAML basics
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SAML example
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SAML architecture

- Core
→Description of syntax, semantic, etc.

- Bindings
– HTTP Redirect, HTTP POST, HTTP Artifact, SOAP, PAOS

→ Means of transportation of SAML messages

- Profiles
– Web Browser SSO Profile

– Enhanced Client or Proxy (ECP) Profile

– Single Logout Profile

- Metadata
– Description of URL endpoints, signing & encryption keys, etc.
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SAML example metadata
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SAML challenges

- Not universal → Requires application support
→ Many libraries are available

- Requires initial setup (metadata exchange)

- Requires maintenance (key rollovers, etc.)

- No useful auto discovery (only within a domain)



OpenID Connect

Karol Babioch

Security Engineer

kbabioch@suse.de



81

OpenID Connect

- Published 2014 (by the OpenID Foundation)

- Based on OAuth 2.0
→ “Abuses” authorization for authentication

- Allows Single-Sign-On (SSO)

- Feature-wise similar to SAML
- REST-API

- JSON data

→ Easy to consume (web applications, apps on smartphones, etc.)

- Terminology
– Relying Party (RP)

– Identity Provider (IdP)
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OpenID Connect



83

OpenID Connect tokens

- Authorization tokens are managed by the user
→ Access can be revoked
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OpenID Connect challenges

- Not universal → Requires application support
→ Many libraries are available

- Privacy concerns?

- “Phishing” is still possible with OAuth 2.0
→ There have been “worms”

- No signing / encryption between service provider and identity provider
→ “Only” TLS for transport

- Check tokens regularly :-)
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OAuth 2.0 “phishing”
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OAuth 2.0 “phishing”
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OAuth 2.0 “phishing”
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OAuth 2.0 “phishing”
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OAuth 2.0 “phishing”
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OAuth 2.0 “phishing”
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Take-away messages

- Enable two factor authentication where-ever possible
– Annoy / blame service providers that do not yet support it

- Use password manager
– teach your friends and family how to use them

- Use OAuth 2.0 (OpenID Connect) where-ever possible?

- Check tokens regularly, re-evaluate if still needed ...
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